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The effect of collisions between monodispetse particles on their en- 
trainment by a flow is investigated by treating the system of suspended 
particles as a continuum. 

The ex is t ing  analyt ic  methods of inves t iga t ing  the 
motion of p a r t i c l e s  suspended in e a r r i e r  media  a r e  
based on the individual t r a j e c t o r i e s  of the non in te rae t -  
ing pa r t i c l e s .  However ,  in a number  of cases  this ap-  
p roaeh  is not sa t i s fae to ry .  

The p rob lem of pa r t i c l e  aece l e r a t i on  by a flow in a 
s t ra ight  channel was inves t iga ted  in [1], where  the 
following pa r t i e l e  equation of motion was cons t ruc ted :  

du ~ d 2 p (o - -  u) ~ 
m - -  = ; + m g .  

a t  4 2 - (1) 

In tegra t ion of this equation g ives  a d is t r ibut ion of Ve- 
loci ty  u and pa r t i c l e  concent ra t ion  ~ along the length 
of the ehannel x that d i f fers  cons iderab ly  f rom the 
expe r imen ta l  dis t r ibut ion.  In [1] this d i sc repancy  is 
a t t r ibuted to the effeet of pa r t i c l e  col l i s ions  with each 
other  and with the channel wal ls .  It is worthwhile  ob- 
taining an anlytic e s t ima te  of the par t  played by these  
co l l i s ions .  

Obviously, the effect  of  co l l i s ions  i n c r e a s e s  with 
the p a r t i c l e  coneent ra t ion  ~ Accordingly ,  we cons ider  
va lues  ~ > ~0 at which it is r easonab le  to t r ea t  the 
pa r t i c l e  sy s t em as a cont inuum-gas  analogy. In this 
case  the lower  l imi t  u0 is de te rmined  by the condit ion 

<< L, where  L is the c h a r a c t e r i s t i c  d imension  of the 
flow region (in our case  the channel width), and ~ is 
the mean d is tance  between p a r t i c l e s  (of the o rde r  of 
(m/~o) ~/3. 

w For  a sy s t em of ident ical  pa r t i c l e s ,  we wr i t e  
the equations of motion as for  a s imple  gas with a 
d is t r ibu ted  body fo rce  f due to in te rac t ion  between the 
p a r t i c l e s  and the c a r r i e r  medium.  The dynamic equa-  
tion is 

d 
u - - < u >  = - - g r a d p +  ( f ) - ' t -~g ,  (2) 

dt  

the continuity equation is 

dn  
- - +  • ( u> = 0 ,  (3) 

dt  

and the energy equation is 

coT+ = < f.u >--div(p< u >) (4) 

(they can easily be obtained on the basis of general 
principles [2]). 

We determine T with the equation from the kinetic 
theory of gases, which presupposes that the energy 
of random motion of the particles is equally distrib- 
uted over the degrees of freedom [3] 

138-143, 1968 

m (  ( u s ) - -  < u ) 3) = 3kT.  

We have  the analog of the specif ic  heat  c v = (3/2) (k/m) 
and of the equation of s ta te  p = ~t(k/m)T. 

We de te rmine  the fo rce  f in the Stokes approx ima-  
tion. The fo rce  act ing on an individual pa r t i c l e  is fl = 
= 3vdp(v - u). The re  a r e  n = ~4/m pa r t i c l e s  pe r  unit 
volume;  consequently,  the mean  body fo rce  is 

~4 
(f> = 3 n d l x  -m-- (v -- (u ) ) .  (5) 

Correspondingly ,  in the energy equation 

< f. = 3n d I~ __z < (v - -  u). u }. = 
m 

= 3~ d lx-~-  ~ (v. ( u ) - - (  u ) ~--2c~T). (6) 

Using (5) and (6) and discarding the averaging sign, 
we write the equations as 

du 3n d 
- -  = - -  grad p -F an (v - -  u) -{- g • a - -  
dt m 

d• 
- - - E -  •  = O, 
dt 

d coT - k - - ~ -  = • (vu - -  u s - -  2c,~T) - -  div (pu), a-S- 

k 
p = •  T. (7) 

m 

Equations (7) co r r e spond  to the equations of motion 
of a gas in the absence  of d iss ipa t ive  effects  (i.e., the 
analogs of v i scos i ty  and the rma l  conduct ivi ty  a r e  equal 
to zero) .  When a = 0 Eqs.  (7) become the equations of 
motion of a gas;  accordingly ,  at smal l  ce mutual s i m u -  
lat ion of the gas and pa r t i c l e  flows is poss ib le .  At 
l a rge  o~ additional effects  d i f ferent ia t ing  the behavior  
of p a r t i c l e s  and gases  appear .  

w We cons ider  the s ta t ionary  one-d imens iona l  
motion of pa r t i c l e s  in a s t ra igh t  channel,  (d/dt) = u(d/  
/dx) ,  whose equations a r e  

du dp 
~ u  = - - - -  + ~ x ( v - - u ) ,  

dx dx  

• u = const, P = ~-~k T, 
m 

d coT + = 
•  d--~ 

= • (vu - -  u s - -  2c~,T) - -  ~ (pu), 

3 k 
co = - -  - -  ( 8 )  

2 m 

The third equation of sys tem(8)  can be t r ans fo rmed  
using the f i r s t  two equations.  In fact, we have 
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, [ d .  i • u - -  (coT)  + u ~ u - -  •  (v  - -  u )  + 
dx dx 

+2a• d (pu)=O 
dx 

or 

dr 2 r d u u - -  + + 2 ~ T = 0 .  (9) 
dx 3 dx 

Equation (9) can be in tegrated in the following form:  

0 

(lO) 

It follows f rom (10) that as the par t ic les  are  a c c e l e r -  
ated, u ~ v, T dec reases ,  i .e . ,  dT/dx < 0, and, in the  

5 

O.2 o 0.8 /.6 X 

Fig. i. Effect of uo on par t ic le  
acce lera t ion  at To = 0: a ) f rom 
the equation u = i - (1 - u0) • 
x exp (-3~);  b) exact solution. 

gas analogy, the in terac t ion  of  the par t ic les  with the 
flow is equivalent  to "cooling" of the par t ic le  sys tem.  
In the pa r t i cu la r  case when a = 0 we obtain 

which cor responds  to the adiabatic law with Cp/C v = 
= 5/3 (monatomic gas). 

In the general  case sys tem (8) is not in tegrable .  We 
find an approximate solution in the form 

u ---- v - -  (v - -  uo) exp (--  y x), 

T = To exp (--  [~ x). (11) 

F i r s t ,  for convenience,  we wri te  the equations in 
d imens ion less  form 

u d ~ _ k 2 ~  d ~ _ q - 2 ~ = 0 ,  
d x  3 dx 

(12) 

where u =  u/v,  T = (k/m)(T/v2),  x = a x / v .  
To de te rmine  Y and p we integrate  Eqs. (12) with 

respec t  to x from 0 to infinity and subst i tute  Eqs. (11). 
Consider ing  that u ~ 1, T - -  0 as x-- -  o% we obtain 

l _ u o =  To + 1 in 1 
/go ~' Uo 

- -  1 + (1 --Uo) 

2 
[~ -k --~- Y 2 

I~ +.~, + ~- =0. 

Now, we de te rmine  

= 

In=-  1 
UO 

1 " U o  To_ 
UO 

o-o, + 

2~o 

l 2 

2 ~  
(13) 

It is easy to ver i fy  that at these values  of ? and fi Eqs. 
(11) give a fa i r ly  good approximation of the actual be -  
havior of u and T, at l eas t  for smal l  To. 

For  compar ison,  Fig. 1 p re sen t s  values of u a s  a 
function of x at To = 0 calculated f rom (11) and f rom 
the exact solution of the equation u(du/dx) = 1 - u 
cor responding  to To = 0. 

The effect of To on u-(~) is i l lus t ra ted  in Fig. 2. 
Clearly,  the g rea te r  T0, the more  in tense  the acce l -  
era t ion of the par t ic les  by the flow. 

As To inc reases ,  the accuracy  of Eqs. (11) de-  
c r eases ,  because  the var ia t ion  of u-and T deviates 
f rom the exponential.  To es t imate  the effect of large 
values  of To we rewr i te  the f i r s t  of Eqs. (12), sub-  
s t i tut ing dT/d~  f rom the second equation. 

1 2~ 
14 

u (14) 
d x -  5 ~  

3 u 2 

From (14) it follows that when u0 < 1, T0 < (3/5) ~ ,  

dxd'~-u x=0> 0 and the par t ic les  are  acce le ra ted  by the 

r " ~ 4  ' - - a  
- - - - - - b  

o.6; 
ae /.6 2 

Fig. 2. Effect of E0 and T0 on the 
par t ic le  acce le ra t ion :  1)~0 = 0.8, 
To = 0; 2) 0.8 and 0.01; 3) 0.6 and 
0; 4) 0.6 and 0.01; a) f rom the 
equat ion~ = 1 - (1 - u0)exp (-7"2), 
where y is  obtained f rom (13); b) 
approximate solution of l i n e a r -  
ized equations (8) at sma l l  ~0 and 
To: u = 1 - (i - uo) exp(-~) + 

+ 2T0[exp(-~) - exp(-2~)] .  

flow (Fig. 2). When To > ( 3 / 5 ) ~ ,  du < dx x=o 0, i .e . ,  the 

pa r t i c l e s  are  decelera ted and hence the exponential 
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approximation (11) does not hold. If the random and 
mean motions have comparable  veloci t ies ,  the na tu re  
of the par t ic le  acce le ra t ion  will depend s t rongly  on To. 
Obviously, this will be pa r t i cu l a r ly  impor tan t  at smal l  
uo, when sl ight  changes in T0 may s e r i o u s l y  modify the 
fo rm of the re la t ion  u = u(x)andhence  ~(x) = const /u(x).  

Thus,  one of the c r i t e r i a  de te rmin ing  the par t i c le  
acce le ra t ion  p rocess  mus t  be the quanti ty 

5 ~'o 5 k To _ cp k To 

U 0 

which in a ce r ta in  sense  is analogous to the square  of 
the Mach number  (we reca l l  that in gasdynamics  the 
speed of sound is a = ((Op/Cv)(k/m)T)l/z). 

When M = 1 the quanti ty du/dx =:oo, i .e . ,  there is 
a veloci ty jump and, as dis t inct  f rom the case of gases ,  
"sonic" motion along a straight channel is impossible. 

In conclusion, we note that the M number may not 
he the only criterion. Taking into account the analog 
of dissipative processes (viscosity, thermal conduc- 
tivity) must lead to additional criteria associated with 
the transverse dimensions of the channel. The particle 
size distribution should also be an important criterion, 
since different degrees of entrainment of the particles 
by the flow should lead to additional collisions. A de- 
tailed examination of these criteria is possible only on 
the basis of the methods of statistical mechanics. 

p is the densi ty of c a r r i e r  fluid; g is the acce lera t ion  
of gravity;  ~ is the par t ic le  densi ty  (concentrat ion);  
x is the coordinate  along channel;  u is the pa r t i c le  
veloci ty or the mean veloci ty of par t ic le  flow; v is the 
c a r r i e r  flow velocity;  p, T,  c v are  the analogs of p r e s -  
sure ,  t empera tu re ,  and specific heat cha rac te r i z ing  
the in tens i ty  of random motion of the par t ic les ;  k is 
the Bo l t zmann ' s  constant;  f is the Stokes force;  p is 
the dynamic v i scos i ty  of the fluid; a = 3 rd# /m;  u0 and 
To are  the mean velocity and " tempera tu re"  of pa r t i -  
cle sys tem at x = 0, respec t ive ly ;  and ~/, ~ a r e p a r a m -  
e te r s .  The subsc r ip t  0 denotes x = 0; b a r r e d  quanti t ies  
a re  d imens ion less ;  the symbol  <} denotes averaging of 
the pa r t i c l e  p a r a m e t e r s  over unit  volume. 
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NOT ATION 

m is the mass  of a par t ic le ;  d is the pa r t i c le  d iam-  
e ter ;  ~ is the pa r t i c le  aerodynamic  drag coefficient;  
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