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THE ROLE OF PARTICLE COLLISIONS
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The effect of collisions between monodisperse particlés on their en-
trainment by a flow is investigated by treating the system of suspended
particles as a continuum,

The existing analytic methods of investigating the
motion of particles suspended in carrier media are
based on the individual trajectories of the noninteract-
ing particles. However, in a number of cases this ap-
proach is not satisfactory.

The problem of particle acceleration by a flow in a
straight channel was investigated in {1], where the
following particle equation of motion was constructed:
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Integration of this equation gives a distribution of ve-
locity u and particle concentration « along the length
of the channel x that differs considerably from the
experimental distribution. In {1] this discrepancy is
attributed to the effect of particle collisions with each
other and with the channel walls. It is worthwhile ob-
taining an anlytic estimate of the part played by these
collisions.

Obviously, the effect of collisions increases with
the particle concentration . Accordingly, we consider
values W > v at which it is reasonable to treat the
particle system as a continuum-gas analogy. In this
case the lower limit »; is determined by the condition
A < L, where L is the characteristic dimension of the
flow region (in our case the channel width), and A is
the mean distance between particles (of the order of
(m/n) .

§1. For a system of identical particles, we write
the equations of motion as for a simple gas with a
distributed body force f due to interaction between the
particles and the carrier medium. The dynamic equa~
fion is
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the continuity equation is
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{they can easily be obtained on the basis of general
principles [2]).

We determine T with the equation from the kinetic
theory of gases, which presupposes that the energy
of random motion of the particles is equally distrib-
uted over the degrees of freedom [3]

m({u?y —<uy? =3kT.

We have the analog of the specific heat ¢y = (3/2) (k/m)
and of the equation of state p = w(k/m)T.

We determine the force f in the Stokes approxima-
tion. The force acting on an individual particle is f; =
= 3ndu(v — u). There are n = w/m particles per unit
volume; consequently, the mean body force is

(F)y =8ndp 2 (v—(u)). (5)

Correspondingly, in the energy equation
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Using (5) and (8) and discarding the averaging sign,
we write the equations as
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Equations (7) correspond to the equations of motion

of a gas in the absence of dissipative effects (i.e., the
analogs of viscosity and thermal conductivity are equal
to zero). When o = 0 Egs. (7) become the equations of
motion of a gas; accordingly, at small @ mutual simu-
lation of the gas and particle flows is possible. At
large o additional effects differentiating the behavior
of particles and gases appear.

§2. We consider the stationary one-dimensional
motion of particles in a straight channel, {d/dt) = u(d/
/dx), whose equations are
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The third equation of system (8) can be transformed
using the first two equations. In fact, we have
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Equation (9) can be integrated in the following form:

X
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1t follows from (10) that as the particles are acceler-
ated, u — v, T decreases, i.e., dT/dx < 0, and, inthe
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Fig. 1. Effect of ug on particle
acceleration at Ty = 0: a) from
the equation u = 1 — (1 — ug) X
X exp (—yX); b) exact solution.

gas analogy, the interaction of the particles with the
flow is equivalent to "cooling" of the particle system.
In the particular case when o = 0 we obtain

2/3 23
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which corresponds to the adiabatic law with cp/cy =
= 5/3 (monatomic gas).

In the general case system (8) is not integrable. We
find an approximate solution in the form

u=0—(U—up)exp(—vx),
T =Tyexp(— B x). (11)

First, for convenience, we write the equations in
dimensionless form

2 = du -
3 dx+ '

where 4 = u/v, T = (&/m{T/v), X = ax/v.
To determine y and g we integrate Egs. (12) with

respect to x from 0 to infinity and substitute Egs. (11).

Considering that u — 1, T = 0 as X — », we obtain
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It is easy to verify that at these values of y and g Eqgs.
(11) give a fairly good approximation of the actual be-
havior of u and T, at least for small T,.

For comparison, Fig. 1 presents values of uas a
function of x at Ty = 0 calculated from (11) and from
the exact solution of the equation u(du/dx) =1 —u
corresponding to Ty = 0.

The effect of Ty on u(x) is illustrated in Fig. 2.
Clearly, the greater Ty, the more intense the accel-

- eration of the particles by the flow.

As T, increases, the accuracy of Egs. (11) de-
creases, because the variation of u and T deviates
from the exponential. To estimate the effect of large
values of Ty we rewrite the first of Egs. (12), sub-
stituting dT/dx from the second equation.
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From (14) it follows that when u < 1, Ty < (3/5) 6,

F—f— > 0 and the particles are accelerated by the
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Fig. 2. Effect of {; and Ty on the
particle acceleration: 1) Ty = 0.8,
Ty = 0; 2) 0.8 and 0.01; 3) 0.6 and
0; 4) 0.6 and 0.01; a) from the
equationi= 1 — (1 — Ty) exp (—X),
where v is obtained from (13); b)
approximate solution of linear-
ized equations (8) at small {1y and
Ty: u=1-(1—0g)exp(—X) +
+ 2To[exp(—%) — exp(—2%)].

flow (Fig. 2). When Ty > (3/5) 1, %,

particles are decelerated and hence the exponential

<0, i.e., the
x=0
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approximation (11) does not hold. If the random and
mean motions have comparable velocities, the nature
of the particle acceleration will depend strongly on T,.
Obviously, this will be particularly important at small
g, when slight changes in Ty may seriously modify the
form of the relation u = u(x) andhence w(x) = const/u(x).

Thus, one of the criteria determining the particle
acceleration process must be the quantity

S
@

which in a certain sense is analogous to the square of
the Mach number (we recall that in gasdynamics the
speed of sound is a = ((cp/cv)_(k/r_n)T) iy

When M = 1 the quantity du/dx = =, i.e., there is
a velocity jump and, as distinct from the case of gases,
"sonic" motion along a straight channel is impossible.

In conclusion, we note that the M number may not
be the only criterion. Taking into account the analog
of dissipative processes (viscosity, thermal conduc~
tivity) must lead to additional criteria associated with
the transverse dimensions of the channel. The particle
size distribution should also be an important criterion,
since different degrees of entrainment of the particles
by the flow should lead to additional collisions. A de-
tailed examination of these criteria is possible only on
the basis of the methods of statistical mechanics.

NOTATION

m is the mass of a particle; dis the particle diam-
eter; ¢ is the particle aerodynamic drag coefficient;
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p is the density of carrier fluid; g is the acceleration
of gravity; « is the particle density (concentration);

X is the coordinate along channel; u is the particle
velocity or the mean velocity of particle flow; v is the
carrier flow velocity; p, T,cy are the analogs of pres-
sure, temperature, and specific heat characterizing
the intensity of random motion of the particles; k is
the Boltzmann's constant; f is the Stokes force; u is
the dynamic viscosity of the fluid; o = 3rdu/m; ug and
Ty are the mean velocity and "temperature" of parti-
cle system at x = 0, respectively; and vy, 8 are param-
eters, The subscript 0 denotes x = 0; barred quantities
are dimensionless; the symbol () denotes averaging of
the particle parameters over unit volume.
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